Asset Reliability Solutions™

Xamine[®] Oil Analysis Program User Guide

Asset Reliability Solutions™

www.LElubricants.com • 800-537-7683

Xamine[®] Oil Analysis

Program Saves Money with Consistent, Accurate Monitoring

- **Safely extends oil drain intervals** Partnering the Lubrication Engineers Oil Analysis Program with extended service interval technologies maximizes uptime and minimizes maintenance costs.
- *Identifies minor problems before they become major failures* State-of-the-art fluid analysis identifies dirt, wear particles, fuel dilution and coolant contaminants that can cause catastrophic failure or significantly shorten equipment life.
- **Extends equipment life** Monitoring system cleanliness and filtration efficiency gets more out of the equipment you have and can significantly reduce equipment replacement costs.
- Maximizes asset reliability Testing and analysis expands your extended service environment to ensure that units are up, running and making money.
- *Increases resale value* Analysis results provide valuable sampling history documentation that can easily justify higher equipment resale values.

Why Xamine?

High Quality Testing

With Xamine[®], you can be confident you're testing with a laboratory that knows your equipment better than anyone. LE's independent testing laboratories are ISO 17025 A2LA accredited – the highest level of quality attainable by a testing laboratory, backed by the most stringent accrediting body in the industry. This means that your fluid analysis program is supported by a documented quality system you can depend on to deliver superior testing and customer services.

Reliable Reporting & Innovative Data Solutions

Xamine Oil Analysis is fast and accurate. Once your samples have been logged, you can track their progress through the laboratory at **www.eoilreports.com**. Your results are available soon after sample processing is complete. Our online reporting software, **Horizon**[®], available at **www.eoilreports.com**, will then show you how to get the most from your data through management reports that allow you to affect change in your daily maintenance practices by:

- Keeping sampling schedules on track
- · Identifying bottlenecks in turnaround time
- Tracking unit and fluid performance
- Influencing purchasing decisions

Reviewed by Experts

A lab consultant, LE's corporate personnel and your LE lubrication consultant will all review your reports – ensuring a level of expert support that is unmatched in the industry.

Taking Samples

LE's Xamine Oil Analysis Program will show you how regular sampling and trend analysis – monitoring test data over an extended period of time – will provide the information you need to continually maximize asset reliability and increase company profits.

Oil analysis is most effective when samples are representative of the typical environmental conditions under which they operate. Dirt, system debris, water and light fuels tend to separate from lubricants and coolants when system temperatures cool. Samples should be taken while the systems are operating under normal conditions or immediately after shutdown, while they are still at operating temperature.

Samples should also be taken at regularly scheduled intervals and from the same sampling point each time. Although an equipment manufacturer's recommendations provide a good starting point for developing preventive maintenance practices, sampling intervals can easily vary. A major consideration for determining sampling frequency is how critical a piece of equipment is to production. Environmental factors are also important, such as hot, dirty operating conditions, short trips with heavy loads, and excessive idle times.

Whether you're a seasoned veteran or a first-time sampler, a well-designed, quality oil analysis program puts you on track for well-managed, cost-effective equipment maintenance programming.

Sampling Intervals & Methods											
Sampling Interval Suggested Method & Location											
Diesel Engines	Monthly or at 250 hours	By sample extraction pump through dipstick retaining tube or sampling valve installed in filter return									
Hydraulics	250 – 500 hours	By vacuum pump through oil fill port or system reservoir at mid-level									
Automatic Transmissions	500 hours / 25,000 miles	By vacuum pump through dipstick retaining tube or sampling valve installed in filter return									
Manual Transmissions & Differentials	750 hours / 50,000 miles	By vacuum pump through oil level plug or dipstick retaining tube									

Asset Reliability Solutions™

Xamine[®] Test Packages

	Basic Engine	Advanced Diesel	Engine Natural Gas
Purpose	Monitors wear & contamination	Optimizes drai	n intervals
TESTS	Engines	Engines	Engines
Elemental Metals by ICP			
Water % by Crackle	•	•	
Viscosity at 100°C			
Fuel Dilution	•	•	
Soot %			
Base Number		•	
Acid Number			
FTIR Oxidation/Nitration			•

	Basic Industrial	Basic Industrial with PQ	Advanced Industrial	Advanced Industrial with PQ
Purpose	Monitors wear & contamination	Monitors fluid cleanliness	Monitors fluid cleanliness & optimizes drain intervals	Monitors fluid cleanliness and excessive ferrous wear generation
TESTS	Non-Engines	Non-Engines	Non-Engines	Non-Engines
Elemental Metals by ICP				
Water % by Crackle	•			
Water by Karl Fisher, ppm				
Viscosity at 40°C or 100°C	•	•	•	
Acid Number				
Particle Count (PC)			•	•
Particle Quantifier (PQ)				•

Additional testing options are available, including turbine oil analysis. For more information, contact your LE lubrication consultant today.

Xamine[®] Spectrometer Guide

	Wear Metals														
lron (Fe)	Chromium (Cr)	Lead (Pb)	Copper (Cu)	Tin (Sn)	Aluminum (Al)	Nickel (Ni)	Silver (Ag)	Manganese (Mn)	Titanium (Ti)	Vanadium (V)					
Cylinders, gears, rings, crankshafts, liners, bearings, housings, rust	Rings, roller/taper bearing, rods, platings	Bearing overlays, additive in gear oil and gasoline	Bushings, bearings, thrust- washers, friction plates, oil cooler, additive in oil	Bearings, bushings, pistons, platings	Pistons, bearings, pumps, blowers, rotors, thrust- washers	Valves	Bearings, bushings, platings	Trace elements in liners and rings, additive in gasoline	Trace element	Trace element					

Contaminants														
Silicon (Si)	Boron (B)	Sodium (Na)	Potassium (K)											
Element used to determine the level of airborne dirt and abrasives in the oil (sometimes used as an anti-foam agent). Might be from oil anti-foam agent, antifreeze or gasket material.	Present in most permanent antifreeze systems and cooling system inhibitors (sometimes used as an additive).	Present in most permanent antifreeze systems and cooling system inhibitors (sometimes used as an additive).	Present in most permanent antifreeze systems and cooling system inhibitors (sometimes used as an additive in gear oil).											

	Physical Data														
Viscosity	TAN	TBN	Partical Quantifier	Oxidation and Nitration											
Decrease in viscosity from wrong makeup oil, sheardown of viscosity index improvers, fuel contamination or non-emulsified water contamination. Increase in viscosity from oxidation, wrong makeup oil or solids contamination.	Total Acid Number. The relative acidity of the oil. Increasing TAN indicates oxidation or acid contamination. Usually run on non-engine samples.	Total Base Number. Amount of alkaline additive material (alkaline reserve) available to absorb or control acid. Decreasing TBN indicates additive depletion. Primarily run on engine oils.	Detects and measures the mass of ferrous wear debris within the lubricant sample, regardless of the size of the wear particles present. The result is reported as a PQ index.	Infrared analysis that looks at frequency peaks indicating oxidation and the area indicating nitration. Used on dry-fueled engine – testing to relate nitration levels.											

	Additive Metals														
Magnesium (Mg)	Calcium (Ca)	Barium (Ba)	Phosphorus (P)	Zinc (Zn)	Molybdenum (Mo)										
Lightweight housings or casings, or oil additive as a detergent or dispersant	Oil additives usually used for detergents or dispersants	Could be detergent oil additive	Anti-wear or antioxidant oil additive	Anti-wear additive	Anti-wear additive										

Non-Metallic Contaminants													
Fuel	Soot	Water											
Percent fuel contained in the oil sample. Excessive fuel dilution impairs the oil's lubricating qualities and is indicative of operation or maintenance defect.	Measures the amount of combustion solids in the oil sample. May be mostly carbon from incomplete combustion, but can also be oxidized/nitrated fuel.	Percent water found in the oil sample. Could be from cooling system leaks, condensation due to frequent shutdowns, low-temperature operations, poor sump ventilation, or outside water contamination.											

How To Read Your Fluid Analysis Report

Xamine reports produce a wealth of important data and useful recommendations for identifying and correcting the root cause of abnormal conditions. Use the report descriptions and explanations below to better understand your results. Your LE lubrication consultant can assist you in effectively using individual test reports as well as taking advantage of the full data management capabilities of the program.

	Engineeration Envirements' - 6 Soballey Ave. Fort Worth, TX7507 817:361-300 www.leinc.com									Lubricant Analysis Report 800-537-7683									J	2 ABN		4 CRITICA	3			
		017	.910.32001	www.ie-inc.	com													Overa	II report	severity b	ased on c	omment	5.			
		Ac	count	Inform	natior	ı				(Compor	nent In	forma	ation					Samp	le Inforr	nation					
Ac	count I	Numb	er:						Cor	npone	nt ID:	400-1	70 GE				т	racking	g Numl	oer:						
C	ompan	y Nan	ne:						Secondary ID: HARP DRIVE LINE 4								Lab Number: I-744603									
		Conta	ict:						Como	onont	Tuna	WIREC					Lab Location: Indianapolis									
	/ 	Addre	SS:						Component Type: HELICAL GEAR							Data Analyst: JUK										
1	none	amb	er:						1410	inuiau N	Andolu		41750	NCV 21	10				Samp	led: 13-	May-20	012				
										Applic	ation:		+1/JL /BE\/E	DAGE		мт			Receiv	ed: <mark>21-</mark>	May-20	012				
									Sum	n Car	acity	1 at		INAGE	I LA			C	omplet	ed: 22-	May-2	012				
									Juli	ib cat	acity.	- 90														
		F	ilter l	nforma	ation					M	iscellar	ieous l	nforn	nation					Produ	ct Infori	nation					
	Filt	er Ty	pe: NO	ONE						Wildo	ard 1:						Produ	ct Man	ufactu	rer: LUI		ION				
	Micron	Ratir	ng: 0							Wildo	ard 2:							Prod	uct Nai	me: 409	90(H1)	QUINP	LEX			
									Wildcard 3:									WHITE GEAR O								
									Miscellaneous:									viscosity Grade: ISO 220								
			-1						an immediate need for maintenance action. Conti																	
	ommer		agge	nent a	a does	id cor	naic	ate a ons.	n imm Gear a	ediate	pearing	or ma i meta	l is at	ance a a MO	DFR	EVEL; Viscosity is SLIGHTLY LOW; ZINC slightly										
HIGH for this product; Lubricant change acknowledged; S											ed; Sa	mple	inforr	natio	n has	been a	dded d	or tests	have b	een re	run or	5)				
additional testing was added a									the re	eport ł	has bee	n rege	enera	ed; Sa	ampl	e RUSI	HED pe	er custo	omer re	equest.						
											Cor	ntamin	ant													
	-		-	Wea	ar Met	als (p	pm)	_	-	_	Met	als (p	om)	M	ulti-S	Source	Metals	(ppm))	Addit	ve Met	als (pp	m)			
		~								_			~		E E		e l			ε		snc				
#		iun		E E	L			1		L L		_	ium	Ε	len	- Nu	ue:	_		a sin		Jord				
ldu		E C	le l	j.	be	σ		ie ie	e l	lad	L OD	liu	ass	nir	ybo	i ŭ	l ge	in	lo l	gue iii	iun	spł	υ			
San	Lor	Chr	Nic	Alu	5	Lea	Ŀ		Silv G	Var	Silic	Soc	Pot	Tita	Mol	Ant	Mai	Lit	BG	Ual Mai	Bar	Pho	Zin			
3	14	0	0	0	0	0	0	C) 0	0	3	0	23	0	0	0	0	0	0	5 4	1	248	25			
4	12	0	0	0	0	0	0	C	0 0	0	2	0	19	0	0	0	0	0	0	7 4	1	218	24			
5	1	0	0	0	0	0	1	C	0	0	43	0	0	0	0	0	0	0	0	0 0	0	547	13			
6	19	0	0	0	0	0	0	C	0	0	45	0	0	0	0	0	0	0	1	0 3	2	498	2			
7	357	3	0	0	0	0	0	0	0	0	28	0	0	0	0	0	1	0	4	0 7	5	682	17			
8	0	0	0	0	0	0	0	1	. 0	0	9	0	0	0	0	0	0	0	2	0 1	0	602	12			
				Sampl	le Info	rmati	on						Cont	amina	ints				1	Fluid Pr	opertie	S				
	-		-	D	me	6	μ					_						~	>		L .	ч	E			
	olec				ΪĒ	i i		ge	. 0	ige		ion				2	5	Sit	°C	be	pe	ati	itio			
#	ŭ			e G	aqr	1.1	Ĩ	lan	add	Jar	lel	Int		oot		1ste		0°0	00 isc	u di	ase	xid	itra			
ple	Sa		6	¥.	1	=		Ċ	S Di U Action							5	5	>4	>	AZ	۳Z	0	z			
am	ate			ate				nþe								(a)	-Ch	-64	mg	mg	aha/am	abs/0.1				
S N	19-0ct-	2008	28-00	ے t-2008	2	y	1	Yes	ųι	Unk <.1-H						otolate	395	LSL	1.81	кон/у	abs/cm					
4	26-Apr-	2009	05-Ma	v-2009	6	-		Yes Unk <.1 - Hot						otplate	411		1.59									
5	17-Oct-	2009	28-Oc	t-2009	6			Yes No						-	<.1 - H	otplate	440		1.55							
6	06-Aug	2010	09-Au	g-2010	2	9)	No		No					-	<.1 - H	otplate	190		1.30						
7	13-May	2012	21-Ma	y-2012	5	3	3	Yes		No						<.1 - H	otplate	190		0.28						
8	13-May	2012	18-Ma	y-2012	5	5	5	Unk	Jnk Unk <.1 - Hol							otplate	193		1.02							

Accurate, thorough and complete information allows for more in-depth analysis and can eliminate confusion when interpreting results.

Manufacturer and Model

can identify OEM's standard maintenance guidelines and possible wear patterns to expect, as well as the metallurgies involved.

Application identifies in what type of environment the equipment operates and is useful in determining – exposure to possible contaminants. Acc Co

Ρ

Equipment and Sample Information

In order to make effective recommendations, LE's data analysts must have complete and accurate equipment and sample information.

Asset Reliability Solutions™

Recommendations

A data analyst's job is to explain and, if necessary, recommend actions for rectifying significant changes in the lubricant or the unit's condition. Reviewing comments before looking at the actual test results will provide a road map to the report's most important information. Any actions that need to be taken are listed first in order of severity. Justifications for recommending those actions immediately follow.

Comments Flagged data does not indicate an immediate need for maintenance action. Continue to observe the trend and monitor equipment and fluid conditions. Gear and/or bearing metal is at a MODERATE LEVEL; Viscosity is SLIGHTLY LOW; ZINC slightly HIGH for this product; Lubricant change acknowledged; Sample information has been added or tests have been rerun or additional testing was added and the report has been regenerated; Sample RUSHED per customer request.

-	/															L	_	~	_		_	\sim	_	_
				Wez	ar Met	als (n	nm)	~			Cor	ntamir	nant	м	lulti-S	ourde	Metal	: (nnm	,	A	dditi	ve Met		m)
	-		T		in mee		рнн <i>)</i>				met		5111/			T			''					
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorous	Zinc
3	14	0	0	0	0	0	0	0	0	0	3	0	23	0	0	0	þ	0	0	5	4	1	248	25
4	12	¥0	0	0	0	0	0	0	0	0	2	0	19	0	0	0	4	0	0	7	4	1	218	24
5	1	0	0	0	0	0	1	0	0	0	43	0	0	0	0	0	0	0	0	0	0	0	547	13
6	19	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0	1	0	3	2	498	2
7	357	3	0	0	0	0	0	0	0	0	28	0	0	0	0	0	1	0	4	0	7	5	682	17
8	0	0	0	0	0	0	0	1	0	0	9	0	0	0	0	0	0	0	2	0	1	0	602	12
				Samp	le Info	rmati	on						Cont	amina	ants				_	Flu	id Pro	opertie	S	
ole #	Sampled			Received	Lube Time	Linit Time		Change	Lube Added	· Change	Fuel	Dilution		Soot		Water		Viscosity 40°C	Viscosity	100 °C	Acia Number	Base Number	Oxidation	Nitration
Sam	Date			Date	mo	У	۲	Lube	qt	Filter	% \	% Vol		% Vol	ol % Vol		/ol	cSt	cS	it K	mg OH/g	mg KOH/g	abs/cm	abs/0.1 mm
3	19-Oct	2008	28-Oc	t-2008	2			Yes		Unk						<.1 - Ho	otplate	395		1	L.81			
4	26-Apr	2009	05-Ma	y-2009	6			Yes		Unk						<.1 - Ho	otplate	411		1	L.59			
5	17-0ct	2009	28-Oc	t-2009	6	_		Yes		No						<.1 - Ho	otplate	440		1	L.55			
	Ng	-2010	Au	g-2010	2		2	No	_					/		H	otplate	190		1	L.30			

Laboratory might request additional unit and lube information if incomplete on sample label.

Elemental Analysis

Elemental analysis, or spectroscopy, identifies the type and amount of wear particles, contamination and oil additives. Determining metal content can alert you to the type and severity of wear occurring in the unit. Measurements are expressed in parts per million (ppm).

Combinations of these **Wear Metals** can identify components within the machine that are wearing. Knowing what metal a unit is made of can greatly influence an analyst's recommendations and determine the value of elemental analysis. Knowledge of the environmental conditions in which a unit operates can explain varying levels of **Contaminant Metals**. Excessive levels of dust and dirt can be abrasive and can accelerate wear. Multi-Source Metals and Additive Metals could turn up in test results for a variety of reasons. Molybdenum, antimony and boron are additives in some oils. Magnesium, calcium and barium are often used in detergent/dispersant additives. Phosphorous is used as an extreme pressure additive in gear oils. Phosphorous and zinc are used in the anti-wear additive ZDDP (zinc dialkyl-dithio-phosphate).

		~		1							Y													
				Wo	ar Mot	als (n		-	_		Cor	tamir	ant	м		ourco	Motal	c (nnr			ditivo	Mota		m
				vvec		ais (p	piii)				Met		JIII)	141		Juice	Metai							11)
Sample #	Iron	Chromium	Nickel	Aluminum	Copper	Lead	Tin	Cadmium	Silver	Vanadium	Silicon	Sodium	Potassium	Titanium	Molybdenum	Antimony	Manganese	Lithium	Boron	Magnesium	Calcium	Barium	Phosphorous	Zinc
3	14	0	0	0	0	0	0	0	0	0	3	0	23	0	0	0	0	0	0	5	4	1	248	25
4	12	0	0	0	0	0	0	0	0	0	2	0	19	0	0	0	0	0	0	7	4	1	218	24
5	1	0	0	0	0	0	1	0	0	0	43	0	0	0	0	0	0	0	0	0	0	0	547	13
6	19	0	0	0	0	0	0	0	0	0	45	0	0	0	0	0	0	0	1	0	3	2	498	2

Test Data

Test results are listed according to age of the sample – oldest to most recent, top to bottom – so that trends are apparent. Significant changes are in the yellow areas of the report.

The **ISO Code** is an index number that represents a range of particles within a specific micron range, i.e., 4, 6, 14. Each class designates a range of measured particles per one ml of sample. The **Particle Count** is a cumulative range between 4 and 100 microns. This test is valuable in determining large particle wear in filtered systems. Fuel and Soot are reported in % of volume. High fuel dilution decreases unit load capacity. Excessive soot is a sign of reduced combustion efficiency. (only tested on engine oil samples) Water in oil decreases lubricity, prevents additives from working and furthers oxidation. Its presence can be determined by crackle or FTIR and is reported in % of volume. Water by Karl Fischer ASTM D6304 determines the **amount** of water present. These results appear in the Additional Testing section of your report.

Asset Reliability Solutions™

Sample Information / **Component Registration Form**

A Sample Information / Component Registration Form is included with every sample kit. Fill it out only when sampling a new component for the first time or to notify the laboratory of a change in component or fluid information already registered with the laboratory. Complete, up-to-date information ensures that you receive the proper testing and an accurate analysis of the results.

Step 1

- Fill out the Sample Information / Component Registration Form completely and accurately.
- Use this form only for first-time samples, changes • in unit or fluid information previously submitted, requests for additional testing, and requests that a sample be expedited (rush requests).
- Include it in the mailing envelope with the • sample jar.

Sample Labels

Two barcode labels are provided with every Sample Information / Component Registration Form. Every sample submitted to the laboratory must have a barcode attached to the bottle. Make sure the Component ID is listed on both the barcode label and the paperwork. If your sample is submitted online, you will still need to attach a barcode label - with the Component ID written on it – to the sample bottle.

Step 2

• Attach one barcode sticker label to sample jar and retain the second barcode sticker label for your records.

NOTE: When you provide the most accurate and complete unit and fluid information, your laboratory can deliver the most accurate and complete results and recommendations.

BASIC INDUSTRIAL

1-800-537-7683 | www.lelubricants.com

2)

Send an email to:

Management

complete form) -

Apply label to sample jar

custserv@eoilreports.com

to establish an online account

Log into your online account to add or

edit components under Equipment

Use Sample Submission to send sample information to the laboratory

Ship sample to laboratory via trackable

delivery service (see address list below,

(If online access is not available, please

ONLINE SUBMISSION INSTRUCTIONS

RETAIN FOR VOUR RE

Date Taken

Component ID 00000A00000

XAMINE LABORATORY 7451 WINTON DRIVE P.O. BOX 68983 INDIANAPOLIS, IN 46268 SUITE 250 HOUSTON, TX 77086

XAMINE LABORATORY P.O. BOX 30820 3060 CALIFORNIA AVE, STE B SALT LAKE CITY, UT 84104

Complete this form only if online access is provide the laboratory with more detailed of	not comp
ACCOUNT INFORMATION	
Distributor/Sales Rep	
Company Nama	

Xamine[™] Oil Analysis

(ACCT: 593000)

ble. Utilize HORIZON to

Indianapolis

Sampling and Shipping

Houston

Write the address for the laboratory location nearest you on the mailing envelope. (See address choices on the Sample Information / Component Registration Form.) Apply the appropriate postage and ship. It is highly recommended that a trackable delivery service be used for shipping samples to the laboratory. Log on to **www.eoilreports.com** and enter the tracking number just below the barcode to track your sample's progress once it arrives at the laboratory.

Step 3

- Take representative samples.
- Write the address for the lab location nearest you on the mailing envelope.
- Include sample jar and component registration form, if applicable, in mailing envelope.
- Ship by trackable delivery service such as FedEx or UPS.
- Track sample progress through laboratory at www.eoilreports.com.

Test Reports and Data Management

LE's free online reporting option – **Horizon**[®] – is fast, bringing you Xamine test results almost immediately after processing is complete. **Horizon**[®] management reports allow you to make positive changes in your daily maintenance practices by keeping sampling on track, identifying bottlenecks in turnaround time that are costing you money and summarizing unit problems that could influence future purchasing decisions. Control over an extensive host of personal application settings and preferences gives you the power to access the information you need most.

Step 4

- Get test results almost immediately FREE at www.eoilreports.com.
- Make positive changes in your daily maintenance practices.
- Keep sampling schedules on track.
- Identify bottlenecks in sample turnaround time.
- Influence future purchasing decisions.
- Be the first to get the information you need most.

Xamine[®] is a registered trademark and Asset Reliability Solutions[™] is a trademark of Lubrication Engineers. Horizon[®] is a registered trademark of Polaris Laboratories.

LEX_OAUG_119 6-12, rev. 4-24

1919 E. Tulsa • Wichita, KS 67218 • Fax: 800-228-1142 LE operates under an ISO 9001 Certified Quality System. www.LElubricants.com • 800-537-7683